7 research outputs found

    Cooperative Precoding and Artificial Noise Design for Security over Interference Channels

    Get PDF
    We focus on linear precoding strategies as a physical layer technique for providing security in Gaussian interference channels. We consider an artificial noise aided scheme where transmitters may broadcast noise in addition to data in order to confuse eavesdroppers. We formulate the problem of minimizing the total mean-square error at the legitimate receivers while keeping the error values at the eavesdroppers above target levels. This set-up leads to a non-convex problem formulation. Hence, we propose a coordinate block descent technique based on a tight semi-definite relaxation and design linear precoders as well as spatial distribution of the artificial noise. Our results illustrate that artificial noise can provide significant performance gains especially when the secrecy levels required at the eavesdroppers are demanding. © 1994-2012 IEEE

    Beyond Nyquist sampling: A cost-based approach

    Get PDF
    A sampling-based framework for finding the optimal representation of a finite energy optical field using a finite number of bits is presented. For a given bit budget, we determine the optimum number and spacing of the samples in order to represent the field with as low error as possible. We present the associated performance bounds as trade-off curves between the error and the cost budget. In contrast to common practice, which often treats sampling and quantization separately, we explicitly focus on the interplay between limited spatial resolution and limited amplitude accuracy, such as whether it is better to take more samples with lower amplitude accuracy or fewer samples with higher accuracy. We illustrate that in certain cases sampling at rates different from the Nyquist rate is more efficient. © 2013 Optical Society of America

    Representation of optical fields using finite numbers of bits

    Get PDF
    We consider the problem of representation of a finite-energy optical field, with a finite number of bits. The optical field is represented with a finite number of uniformly spaced finite-accuracy samples (there is a finite number of amplitude levels that can be reliably distinguished for each sample). The total number of bits required to encode all samples constitutes the cost of the representation. We investigate the optimal number and spacing of these samples under a total cost budget. Our framework reveals the trade-off between the number, spacing, and accuracy of the samples. When we vary the cost budget, we obtain trade-off curves between the representation error and the cost budget. We also discuss the effect of degree of coherence of the field. © 2012 Optical Society of America

    Lower bounds on the error probability of turbo codes

    Get PDF
    We present lower bounds on the error probability of turbo codes under maximum likelihood (ML) decoding. We focus on additive white Gaussian noise (AWGN) channels, and consider both ensembles of codes with uniform interleaving and specific turbo codes with fixed interleavers. To calculate the lower bounds, instead of using the traditional approach that only makes use of the distance spectrum, we propose to utilize the exact second order distance spectrum. This approach together with a proper restriction of the error events results in promising lower bounds. © 2014 IEEE

    Super-resolution using multiple quantized images

    Get PDF
    In this paper, we study the effect of limited amplitude resolution (pixel depth) in super-resolution problem. The problem we address differs from the standard super-resolution problem in that amplitude resolution is considered as important as spatial resolution. We study the trade-off between the pixel depth and spatial resolution of low resolution (LR) images in order to obtain the best visual quality in the reconstructed high resolution (HR) image. The proposed framework reveals great flexibility in terms of pixel depth and number of LR images in super-resolution problem, and demonstrates that it is possible to obtain target visual qualities with different measurement scenarios including images with different amplitude and spatial resolutions. © 2010 IEEE

    Optimal measurement under cost constraints for estimation of propagating wave fields

    Get PDF
    We give a precise mathematical formulation of some measurement problems arising in optics, which is also applicable in a wide variety of other contexts. In essence the measurement problem is an estimation problem in which data collected by a number of noisy measurement probes arc combined to reconstruct an unknown realization of a random process f(x) indexed by a spatial variable x ε ℝk for some k ≥ 1. We wish to optimally choose and position the probes given the statistical characterization of the process f(x) and of the measurement noise processes. We use a model in which we define a cost function for measurement probes depending on their resolving power. The estimation problem is then set up as an optimization problem in which we wish to minimize the mean-square estimation error summed over the entire domain of f subject to a total cost constraint for the probes. The decision variables are the number of probes, their positions and qualities. We are unable to offer a solution to this problem in such generality; however, for the metrical problem in which the number and locations or the probes are fixed, we give complete solutions Tor some special cases and an efficient numerical algorithm for computing the best trade-off between measurement cost and mean-square estimation error. A novel aspect of our formulation is its close connection with information theory; as we argue in the paper, the mutual information function is the natural cost function for a measurement device. The use of information as a cost measure for noisy measurements opens up several direct analogies between the measurement problem and classical problems of information theory, which are pointed out in the paper. ©2007 IEEE

    Average error in recovery of sparse signals and discrete fourier transform [Seyrek i̇şaretleri̇n geri̇ kazaniminda ortalama hata ve ayrik fouri̇er dönüşümü]

    No full text
    In compressive sensing framework it has been shown that a sparse signal can be successfully recovered from a few random measurements. The Discrete Fourier Transform (DFT) is one of the transforms that provide the best performance guarantees regardless of which components of the signal are nonzero. This result is based on the performance criterion of signal recovery with high probability. Whether the DFT is the optimum transform under average error criterion, instead of high probability criterion, has not been investigated. Here we consider this optimization problem. For this purpose, we model the signal as a random process, and propose a model where the covariance matrix of the signal is used as a measure of sparsity. We show that the DFT is, in general, not optimal despite numerous results that suggest otherwise. © 2012 IEEE
    corecore